

Low-Cost Cruise Missile Defense (LCCMD)

Tim Clark

24 August 2005

Low Cost Cruise Missile Defense (LCCMD)

Problem:

- Highly proliferated, low-cost/low-tech cruise missiles or other airframes delivering conventional or chem/bio warheads
- Current interceptors are:
 - designed for small numbers of sophisticated threats
 - costly
 - don't have range for chem/bio threat
- Desired Solution:
 - Long range (>100km) intercept for chem/bio threat
 - Used with existing or emerging launchers and radars
 - Low-cost (\$100k)

Concept of Operations

Cost is the Driving Design Factor

Interceptor comparison

	Target	Range	Speed	Seeker	Unit Cost
PAC-3 (ground-to-air)	Tactical ballistic missiles	15 km	Mach = 5	Active	\$3,875k (FY02 \$)
PAC-1 (ground-to-air)	Fighter Aircraft	70 km	Mach = 3	Semi-active	\$893k (FY02 \$)
AMRAAM (air-to-air)	Fighter Aircraft Cruise missiles	40 km	Mach = 4	Active	\$524k (FY02 \$)
LCCMD	Aircraft Cruise missiles	300+ km	Mach = 0.9	Active	\$100k (FY02 \$)

LCCMD cost breakdown

Antenna

\$19k ⁻

Electronics

\$21k

LCCMD

\$60k

\$100k

 Use modern, low-cost, chip-integrated electronics

Affordable Long-Range Interceptor

Replace gimbal with electronically steered array using low cost T/R modules

Built and Tested Ka-Band Active ESA

T/R MMIC

6 Wafers fabricated 1158 MMICs needed 1406 MMICs completed Transmit Receive Integrated Microwave Module (TRIMM)

16 Element: 6 + 3 spares

24 Element: 16 + 3 spares

32 Element: 6 + 2 spares

Assembled and Tested AESA

$FOM = P_t *G / F_n$				
P _t = Transmit power, dBm G = Gain, dB F _n = Noise Figure, dB				
Required	> 71.8 dBm			
Measured	74.5 dBm			

LCCMD Schedule

Preliminary Design

 Low-Cost Ka-Band Active ESA

Miniaturized Active ESA

- Form-factor AESA design
- MIMIC design, fabrication, and testing
- Antenna integration

Non-Form-Factor Seeker

· Fabrication and test

FY06 Plans

- Build non-form factor seeker electronics and perform captive flight test
- Transition to Army for integration into missile seeker developments